

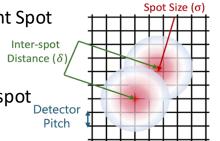
Theme: Physics / Abstract No.: PTCOG-AO2025-ABS-0131

Abstract Title: Analytical Simulation of Adjacent Spot Distinction in PBS Proton Therapy: Effects of Spot Size, Inter-Spot Spacing, and Detector Pitch

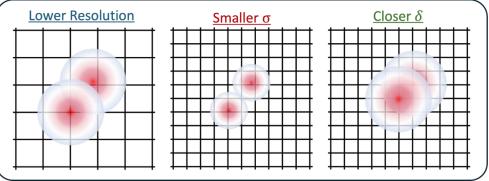
Jongeun Kim^{1,2}, Sung Hun Kim², Haeng Hwa Lee², Hye Jeong Yang², Yoonsun Chung¹, Chankyu Kim^{2,*}

- 1 Department of Nuclear Engineering, Hanyang University, Republic of Korea
- 2 Proton Therapy Center, National Cancer Center, Republic of Korea

HANYANG UNIVERSITY



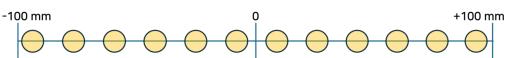
Background & Aims

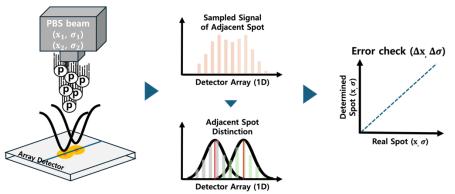

- Spot Size (σ) of PBS Proton Therapy Beam: 2.6-13.0 mm
- Typical IC Array for PBS QA: 7.1-7.6 mm-pitch
- (AAPM TG-224) Proton Therapy PBS QA Tolerance for Spot Measurement: 1 mm (position), 10% (σ)

Under-sampling Case for Adjacent Spot

- 1. Lower number of samples
- 2. Detector pitch $\gg \sigma$
- 3. Too-close δ looks like merged spot

Under-sampled Signal


This study analytically investigates adjacent-spot distinction in PBS proton therapy by varying spot size (σ), inter-spot spacing (δ), and detector pitch.


Materials & Methods

Simulation Condition for Adjacent Spot Distinction:

Ideal Point Sensor 1D Array (0.25-10 mm Pitch)

• Adjacent Spot: 2 Equal-amplitude Single-Gaussian Spots $(\sigma = 2.6-13 \text{ mm}, \delta = 0.1-30 \text{ mm})$

Non-linear Least Squares fitting

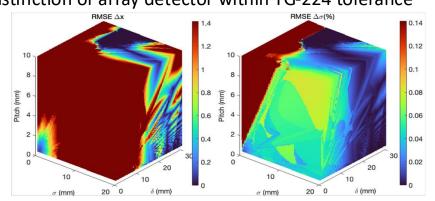
$$S = \Sigma S = S_1(x_1, \sigma_1) + S_2(x_2, \sigma_2) \xrightarrow{NLLS}$$

$$\hat{S} = \hat{A} \cdot \left[exp \left[-\frac{(x - \hat{x}_1)^2}{2\hat{\sigma}_1^2} \right] + exp \left[-\frac{(x - \hat{x}_2)^2}{2\hat{\sigma}_2^2} \right] \right]$$

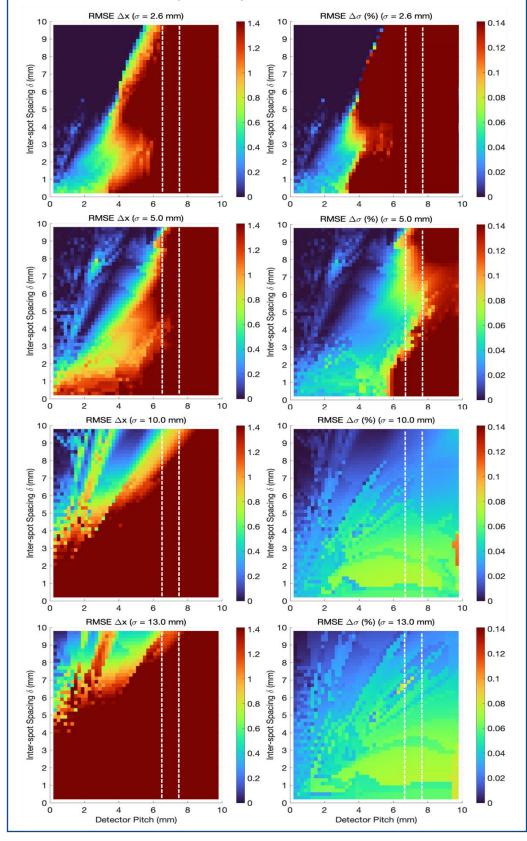
Root-mean-square-error (RMSE) Heatmaps for Accuracy Quantification of Adjacent Spot Distinction:

$$RMSE_{\Delta x} = \sqrt{\Delta x_1^2 + \Delta x_2^2} \le 1.414 \, mm$$

$$RMSE_{\Delta\sigma} = \sqrt{\Delta\sigma_1^2 + \Delta\sigma_2^2} \le 14.14 \%$$



Acknowledgement


This study was supported by a grant of National Cancer Center (NCC) in Korea. (NCC-2410970-2)

Results & Discussion

■ RMSE 3D heatmap (x: σ , y: δ , z: pitch) shows adjacent spot distinction of array detector within TG-224 tolerance

- 6.5-7.6 mm-pitch array (white dash) only resolve overlapped spots when $\sigma \gtrsim 10$ mm & $\delta > 9$ mm
- Arrays (< 3 mm-pitch) distinguish overlapped spots (σ = 2.6-13 mm, optionally $\delta \propto 0.1\sigma$ -0.5 σ)

Conclusion

- Conventional detectors are sufficient for gamma analysis, but higher-resolution detectors are required to verify individual spot assignments in PBS proton therapy plans
- Limitation: only considered ideal point detector and two spot distinction, assumed single-Gaussian dose distribution of PBS Proton Therapy beam spot